Quantum Stratonovich Stochastic Calculus and the Quantum Wong-Zakai Theorem
نویسنده
چکیده
We introduce the Stratonovich version of quantum stochastic calculus including integrals with respect to emission (creation), absorption (annihilation) and scattering (conservation) processes. The calculus allows us to consider the limit of regular open dynamical systems as a quantum Wong-Zakai approximation theorem. We introduce distinct definitions of Itô Dyson and Stratonovich Dyson time-ordered exponentials and give the multi-dimensional quantum noise conversion formulae between them. The convergence issues in the approximation theorem are illustrated using diagrammatic conventions.
منابع مشابه
Quantum Stratonovich Calculus and the Quantum Wong-Zakai Theorem
We extend the Itō-to-Stratonovich analysis or quantum stochastic differential equations, introduced by Gardiner and Collett for emission (creation), absorption (annihilation) processes, to include scattering (conservation) processes. Working within the framework of quantum stochastic calculus, we define Stratonovich calculus as an algebraic modification of the Itō one and give conditions for th...
متن کاملOn the interpretation of Stratonovich calculus
The Itô–Stratonovich dilemma is revisited from the perspective of the interpretation of Stratonovich calculus using shot noise. Over the long time scales of the displacement of an observable, the principal issue is how to deal with finite/ zero autocorrelation of the stochastic noise. The former (non-zero) noise autocorrelation structure preserves the normal chain rule using a mid-point selecti...
متن کاملGood Rough Path Sequences and Applications to Anticipating Stochastic Calculus
We consider anticipative Stratonovich stochastic differential equations driven by some stochastic process lifted to a rough path. Neither adaptedness of initial point and vector fields nor commuting conditions between vector field is assumed. Under a simple condition on the stochastic process, we show that the unique solution of the above SDE understood in the rough path sense is actually a Str...
متن کاملOn Quantum Stochastic Generators
From the notion of stochastic Hamiltonians and the flows that they generate, we present an account of the theory of stochastic derivations over both classical and quantum algebras and demonstrate the natural way to add stochastic derivations. Our discussion on quantum stochastic processes emphasizes the origin of the Itô correction to the Leibniz rule in terms of normal ordering of white noise ...
متن کاملar X iv : m at h / 05 01 19 7 v 1 [ m at h . PR ] 1 3 Ja n 20 05 GOOD ROUGH PATH SEQUENCES AND APPLICATIONS TO ANTICIPATING & FRACTIONAL STOCHASTIC CALCULUS
We consider anticipative Stratonovich stochastic differential equations driven by some stochastic process (not necessarily a semi-martingale). No adaptedness of initial point or vector fields is assumed. Under a simple condition on the stochastic process, we show that the unique solution of the above SDE understood in the rough path sense is actually a Stratonovich solution. This condition is s...
متن کامل